Math 564: Advance Analysis 1
Lecture 11
Bored dsomocphism Theorem. Any two ucotbl Polish spaces are Bore isomorphic. In particular, they are all of cardinality coatinname and Bevel isomorphic to the Cantor space 2 N .

Det. A standard Bored space is a measurable space (X, B), sure B is the o-aly of Boned sets for sone Polish top. on X. In other words, a standard Bone space is a Polish space where we forgot the topology hat kept the Bore sets.

The Bond som. theorem says hA there is only one, ap do isomorphism, wactbl standard Bour space.

Def. A standard pabability space is a pat. spae (x, B, μ), where $(X, O B)$ is spaniard Boned (ie. a Polish ghee with a Bone prob. menses on it).

Prop. For a col cthol Hanschurff top space X (e.g. a separable metric space), for any Bond probability veacure μ on X, the atoms of n we singletons.
Poof, Just König's lena + pigeons. HW.
Cor. Lit (x, μ) b. us in the above popososition, then $\mu=\mu^{\prime}+\sum_{n \in \mathbb{N}} a_{n} \delta_{x_{n}}$, vire $\left\{x_{n}: n \in \mathbb{N}\right\} \leq X, a_{n} \geq 0$, at J^{-1} is atomelen.
Prot. Sine atoms are disjoint singletons, there are only ctbly macy of then (s) the pre-measire extacation leman), so we
ans rewoul them foom ${ }^{\prime}$ to oblain μ^{\prime}.
Measure is acorphism theorem. Any two atowlem stachurd prob. spaces are measure-isomocphic. In fadt, there is a (genuine) Boul isonorphism betwoen them that is a measure-isomorphisus. Ic particulas, all such cpuces are isocoophic to $([0,1], \lambda)$.

We non give icleas of proofs of earh of these Reonens.
Bonel isom. proot-statch. We tix an unctbl Polish space X anal shor that it is Bonel isow. to z^{N}. We do so by proving
$\left.\begin{array}{l}\text { (a) } X \xrightarrow{\text { Broed }} 2^{\mathbb{N}} . \\ \text { (b) } 2^{\mathbb{N}} \xrightarrow{\text { Bood }} X .\end{array}\right\} \begin{aligned} & \text { Boul } \\ & C_{r} \text { weass a Bonel cabeddicy. }\end{aligned}$
(b) $2^{\mathbb{N}} \xrightarrow{\text { Bood }} X$.

This is enough by the proof of Schröder-Bernstein theorem boase the lattur ouly uses inages and preimages of Bonel ents under the given Bonel eabeddinga.

Proof of (a). We build a "binary represeadatige" map for X as follous. Fix a c|b| opec basis $\left(U_{n}\right)_{a \in \mathbb{N}}$ for the topologg.
Define $b: X \rightarrow)^{\mathbb{N}}$ by $x \mapsto\left(\mathbb{1}_{u_{n}}(x)\right)_{u \in \mathbb{N}}$. Since X e, Hasscloiff, b is injective. Prainage of a glinder is a fin. intersection of sets' of the bim u - or Gac, so b is Borel. By the Lazin-Souslin the fram Deacriptive Let Rong, b is a Borel embedding.
Pcoop of (b), By the Cactor-Bondixson theonew from NST $X=P U U$, Stere P is a closed cabset of X that is perfect (no isolated
points) and U is ctbl opee set. (actor's Pertect Set theren sey, the $2^{\text {IN }}$ homoomorphically enbeds into everoreprisfect P olich ipace, so if X is unctesl, P is noneupty perfect Polish, so $2^{\mathbb{N}}$ cs X, i.e. Lapologically embods into X,
$\frac{\text { Measure isom. proof-sketch. We pave not hor eveg atombtess }}{(X)}$ (x, j), there is a Boel ison witl $([0,1], \lambda)$ that is also a aensare jsomorplisun. Becase $|x, y|$ has no atons (which ane ringlitous), x has to be uactbl. There is a Boul isow. $f: X \rightarrow[0,1]$. Then $\mu^{\prime}:=f_{*} \mu$ is an atronten Berel grob. neasise on $[0,1]$. In other woeds, we have assuaned foow the bagiuning sht $X=\{0,1]$ al f is a liocel ecosire on $[0,1]$,
By a HW question, μ al λ on $[0,1]$ are weashre-isomorphic, al huildic a Borel iso-orphise witwenimg his i) doee via the Bo-it iownophism heorem, hich helps sweeping a wall sats wader the rag.
Integeation. let (x, y) be a anaswrable space. Denote by $L(X, Y)$ and $L^{+}(x, S)$ the sets of S-meararable functions to $[-\infty, \infty]$ and to $(0, \infty]$, respectively.

The 0-D couvention. In the measure-theoretic anfext, $0 . \infty$ is 0 .
Note hat $L^{t}:=L^{+}(x, \rho)$ is dosed under wow-negotive linear confirctions aud muttiplication. An integrat \int on L^{+}is a nonunegative linear tuctivanal on L^{+}that is $c+b \mid$-additive, i.e.
(i) $\int(a \cdot f+b \cdot g)=a \cdot \int f+b \cdot \int g$ for all $a, b \geqslant 0$ aal $f, g \in L^{+}$.
(ii) $\int f \geq 0$, in pacticular, if $f \leq y$ than $\int f \leq \int g$, fordl $f_{1} g \in[f$.
(iii) $\int \sum_{n \in \mathbb{N}} f_{n}=\sum_{n \in \mathbb{N}} \int f_{n}$ for $d l \quad f_{n} \in L^{+}$.

Obs. Each intryral \int ar L^{+}defines a measued μ_{S} lon (X, S) by

$$
A \mapsto \int \mathbb{1}_{A}
$$

for each $A \in S$, where $\mathbb{1}_{A}$ is the indicator function at A.
Dur goal is ho revecse Mis: given a weasure μ on X, we build an isteyral \int_{μ} s.t. $\mu_{S_{r}}=\mu$.

The yearal ceal-valued ferchion will be handled aftesmards by the realizution $n A$ ung such fanction $f: X \rightarrow \mathbb{R}$ splits into a diffeance $f_{+}-f_{-}$of woinegative tuachions, called its povitive cul segative parts, lefined by $f_{+}:=\left.f\right|_{f^{-1}}([0, \infty))$ and $f_{-}:=-\left.f\right|_{f^{-1}}((-\infty, 0])$. Note WA f_{-1} d f_{-}have disjoint supporth (i.e. the y are nocuzero on lisjoint sef.).

Civen μ, we tirst defire the integral \int or the so-called simple functions, anl then we sho ght evers tanc. in L^{+}is appaxiucted trom betow hy riuple fanckiow, 10 we extend \int do L^{+}.

Simple fucctions. A simple function $f: X \rightarrow \mathbb{R}$ is just a linear wombination of indicatios functions of μ-reasurable ith (tene they are f-nesgurable).

Obs. A trution is simple \Leftrightarrow it is measurable al has finite inage. $\overline{P_{\text {coof. }}} \Rightarrow$. let $f=\sum_{i<n} a_{i} \cdot \mathbb{1}_{A_{i}}$, then $f(x) \leq\left\{\sum_{i<n} b_{i} a_{i}: \vec{b} \in 2^{n}\right\}$.
\Leftrightarrow Suppose $f(X)=\left\{a_{0}, \ldots, a_{n-1}\right\} \quad$ Na $f=\sum_{i<n} a_{i} \cdot \mathbb{1}_{A_{i}}$, where $A_{i}:=f^{-1}\left(a_{i}\right)$. This is called the standard representation of f.

Note nt single functions form an \mathbb{R}-algebra, ie. it is an \mathbb{R}-vactor space closed under multiplication (indeed, f - g in simple if f, y are becase $\left.\mathbb{1}_{A} \cdot \mathbb{1}_{B}=\mathbb{1}_{A \cap B}\right)$.

